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Abstract. Using the evolution operator mthcd, we derive the exact propagator of the 
generaliied parametric oscillator in ifs more general form. This result is exploited to obiain 
lhe exact wavefunction of a damped and driven, inverIed harmonic oscillator of the Caldirola- 
K d  rype, laking a Gaussian wavepcket as the initial state. We discuss the tunnelling process 
of such a system. The probability density and the persistence probability are evaluated. The 
expression for the sojourn time is derived for a small external force, and is the sum of two 
terms. whose explicit forms are obtained in the case of an extended wvepackeL The first term 
is an increasing funcrion of the dissipation parameter y ,  whereas the second one is strictly due 
to the presence of the driving force. 

1. Introduction 

In the last few decades there has been sustained interest in quantum systems with t ime 
dependent Hamiltonians. Indeed, as is well known, they provide a phenomenological 
description of dissipative processes, and are widely used to model'phenomena in which 
interactions with the surroundings play a basic role. In particular, some methods have been 
derived in order to obtain exact solutions of the Schrijdinger equation for time-dependent 
oscillators. The main tools are: (i) path-integral formalism [l]; (ii) dynamical invariants 
[Z, 31; (iii) time-dependent canonical transformations [3]; (iv) second quantization [4,51; 
and (v) group-theoretical methods [6-8]. 

The last approach is based on the determination of the evolution operator by means of 
the time-ordering algebraic method developed by Wei and Norman [91. It can be applied 
whenever the Hamiltonian can be expressed as a (time-dependent) linear combination of 
the generators of some Lie group. 

The Lie algebraic method has been applied, among others, to the study of a damped 
harmonic oscillator driven by a time-dependent external force, by exploiting the underlying 
SU(IJ) 63 h(4) structure of its Hamiltonian [lo, 111. The same problem has been dealt 
with in [5 ]  by other methods. We recall that Hamiltonians with such an algebraic structure 
have been considered in a variety of physical problems, e.g. pulse propagation in a free- 
electron laser [IO], the analysis of time-dependent coherent states [ l l ]  and the generation 
of non-Poissonian effects in laser-plasma scattering [12]. 

I1 On leave From Department of Physics, Patras University, 26110 Pabas. Greece (permanent address) and IBR, 
Palm Harbor, FL 34682, USA. 
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In the present paper we study the problem of quantum tunnelling for a damped, inverted 
harmonic oscillator driven by a monochromatic external force, with a Hamiltonian of the 
form 

-2  

(1.1) P -  m 
2m 2 

A(t) = -e Y* - -02G2eY' + ,I.+ cos bt 

whose exact wavefunctions are derived by just exploiting its SU(1, I )  @ h(4) algebraic 
structure. As is well known, the first part of Hamiltonian (1.1) without the external term 
is called the inverted Caldirola-Kanai (a) Hamiltonian, and is formally obtained from the 
usual CK Hamiltonian [13] by the replacement w -b io. In spite of the many analogies 
between the two Hamiltonians, the physics is different: the energy eigenstates of the inverted 
one are not square integrable and are doubly &generate, e.g. with respect to incidence from 
the left or right or alternatively with respect to parity [14]. 

Of course, for y --f 0 the inverted CK Hamiltonian reduces to that of the inverted 
harmonic oscillator, which has been applied, for example, to masers 1151 and to reactive 
scattering [ I Q  

Both the inverted oscillator and inverted a Hamiltonians produce squeezed states 
[14,17]. We also recall that the problem of quantum tunnelling forhe inverted CK 
Hamiltonian has recently been discussed by two of us [18]. 

The plan of this paper is as follows. In section 2 we derive the expression for the 
propagator of the generalized quadratic parametric oscillator with the Hamiltonian 

by exploiting its SCl(l, I) @ h(4) structure and the Wei-Norman (WN) method. The results 
of section 2 are applied in section 3 to finding the exact wavefunctions of system (1.1) for an 
initial Gaussian wavepacket. In section 4 we calculate the probability density, the persistence 
probability and, then, the sojourn (or dwell) time, which (for a small perturbation) is the 
sum of two terms. Section 5 concludes the paper. The explicit calculation of the sojourn 
time for an extended wavepacket is given in the appendix. 

2. Propagator of the generalized quadratic parametric oscillator 

Consider the generalized quadratic parametric oscillator [I91 

where 

and 

?( t )  = p ( t ) i  + u(t)ij.  (2.3) 

The problem of finding the evolution operator, in the form of a WN ordered product, 
for a Hamiltonian with an SU(1, I)  @ h(4) algebraic structure has been solved formally 
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in [7] and [ 101 by applying the Levi theorem. In the present case, we can take advantage 
of knowing the 'unperturbed' evolution operator (corresponding to the Hamiltonian eo@)) 
[20], the explicit coordinate representation of the generators of the Weyl group and the one- 
dimensional Lorentz group. Indeed, we can express the evolution operator corresponding 
to E i ( r )  as 

(2.4) 

where the WN characteristic functions A@), a(t) ,  b(t), c( . are given in analytic 
1201. Replacing (2.8) in (2.7) yields 

&(t) = ~ ( r ) 4  - iN(t)a/aq 

where 

(2.8) 

rm in 

(2.9) 

r 
P ( t )  = h(t')f(t')dt' 

(the dot denoting time derivative). 

(2.14) 
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Equations (2.4). (2.8). (2.11H2.14) fully solve our problem. Once the evolution 
operator is known, we can obtain the propagator according to the relation 

G(q, d, t )  = ir(t)S(q - 4'). (2.15) 

We have explicitly 

(2.16) 

where A ( t )  = A(t )  + g(t). The exact form (2.16) of the propagator for the generalized 
quadratic parametric oscillator is derived here apparently for the first time (however, see 
[211, in which the special case Y ( t )  = u(t )  = 0 in equation (1.2) has been considered by 
the same approach). 

3. Solution of the inverted, driven CK oscillator 

The driven, inverted CK Hamiltonian (1.1) is obviousIy a special case of (2.1X2.3) with 

z(r) = e-y' ~ ( t )  = o x(r) = -e-Y' p(t) = ~ c o s i i t  u(t )  = 0. 

(3.1) 

Therefore, from [20] and equations (2.12)-(2.14), we obtain the following expression for 
the WN characteristic functions a ( f ) ,  b(t). c(r), A@), h(t) ,  f(t): 

imw sinhfit 
a(r) = - ey' 

Z i i  cosh(Q2t + (D) 

y t  cosh(C2t + (D) 

2 cosh (D 
b(t) = - - In 

ifi sinhQt 
2mw cosh(Qt + (D) 

c(t) = - 
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and 

W ( t )  = 1 n + iCi -; 12-  cz - iii + y j2  

(3.9) 

1 - , i ~ + i f i - y / ~ ~ t  1 - ,-cn-iii+y/z)t 1 - e(Q-ifi-y/2)t 1 - e-(n+ia++Y/2)r 
R ( t )  = + + + 

~ ~ + i C , - - y j 2  ~ ~ - i i i - y j 2  ~ ~ - i i i - y / 2  ~ ~ + i i i + y j 2  ' 

(3.10) 

In order to find the exact wavefunction, according to the formula 

W. t )  = 1 G(q, 4'. t ) W ,  Wdq' (3.11) 

we take the Gaussian wavepacket as the initial state 

Thus, we get 

(3.13) 

where the WN characteristic functions are given by equations (3.2H3.7). 

4. Tunnelling process for the inverted driven CK oscillator 

We now want to apply the results of the previous section to discuss quantum tunnelling for 
a driven inverted CK oscillator. As is well known, different definitions of tunnelling times 
exist in the literature 1221. We do not face this problem here, and rely on the discussion 
and definitions given in [23]. 

Therefore, we define as the mean total sojoum (or dwell) time the quantity 



7142 S Baskoutas et a1 

where Q ( t )  is the persistence probability, defined by [24] 

Q W  = / d 2 ~ ( q . f ) d 4  dl (4.2) 

where p ( q .  t )  = l+(q,t)\* is the probability density and (d,,dz) is an intewal containing 
the barrier region. Let us evaluate the above quantities for the driven, inverted CK system. 

After some tedious but stiaightfonvard algebra we find the following expression of the 
probability density 

where 

(4.3) 

(4.4) 

(4.5) 

and lo = (t/Zmo)‘’* is a scattering length characteristic of the system. 

inverted harmonic oscillator. 
Of course, for y + 0 and A -+ 0 one recovers exactly the results of [25] for the 

As to the persistence probability, we get 

where E a . ]  is the error function. 
Let us now calculate the sojourn time. Replacing equation ( 5 )  in equation yields 

The integral on the right-hand side of equation (4.7) cannot be evaluated exactly. 
However, if the parameter h of the driving term in Hamiltonian (1.1) is small, we can 
get an approximate expression for the dwell time. Indeed, expanding the error functions in 
powers of A yields, to first order, the following expression for the integrand in brackets in 
equation (4.7): 

Am e-btr’ sinh Slt 

or@) 4mmcoshp 
+- [R@) - cosh(S2t + 9) 

(4.8) 



Quantum tunnelling of a inverted harmonic oscillator 7143 

Hence the sojoum time takes the form 

(4.10) 

In the case of an extended wavepacket (i.e. with a width much greater than the 
characteristic length, U >> lo), it is possible to show (see the appendix) that the sojoum time 
(4.9) reads explicitly 

where (see equation (A.4)) 

(4.12) 

and, for a wavepacket initially centred at the origin (40 = 0). the function F ( y ,  Q, 6) is 
given by equation (A.8). We therefore see that the total sojourn time includes two terms. 
The first one corresponds to the inverted CK Hamiltonian without the perturbation, and is 
an increasing function of the dissipation parameter y [IS]. In fact, the function f ( y ,  w )  
takes its maximum value f(y, w )  = 1 f o r y  = 0. The decrease in the tunnelling process 
due to the dissipation has also been predicr. in a different way by other authors (see, e.g., 
[261). The second term of the sojoum time is due to the perturbation and also depends on 
the frequency fi of the extemal force. 

Finally, let us write down the expression for the sojourn time for the special case y = 0, 
i.e. for a driven inverted oscillator with Hamiltonian [241 

j 2  m 
2m 2 

H = - - - _ w ~ ~ ~ + A ~ c c I s ~ ~ ~ .  (4.13) . 
In this case, we have simply f(0, w )  = 1. The function F(0,  W .  G) can be obtained by 

putting Y = 0 in equation (AA) or by a direct computation of the integral in equation (4.9). 
We get 

(4.14) 
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5. Conclusion 

In this paper, we have applied the evolution operator method (and the WN theorem) to 
obtain the exact propagator of the generalized quadratic parametric oscillator, by exploiting 
the SU(I, 1) @ h(4) algebraic structure of its Hamiltonian. The results have been applied 
to the driven, inverted CK oscillator, taking a Gaussian wavepacket as the initial state. The 
probability density and persistence probability have been evaluated. The exact expression 
of the sojoum time is derived. For a small perturbation, the sojoum time to the first order in 
the perturbative parameter is the sum of two terms, whose expression is found explicitly for 
the case of an extended wavepacket. The first one (depending on the dissipation parameter 
and the oscillator frequency) is the sojoum time of the inverted CK oscillator, whereas the 
second one is due to the presence of the driving force. The special case of the absence of 
dissipation has also been considered. 
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Appendix Calculation of the sojourn time 

Let us consider as the initial wavefunction a wavepacket whose width is greater than the 
characteristic length associated with the driven CK Hamiltonian (1.1). i.e. U >> 10. In the 
same hypothesis, we can also assume that 

ld1.z - qm(A = 0)l << U d1.z < U. 64.1) 

Then, the error functions in the first term of equation (3.22) can be approximated by 

Moreover, for U >> 10. from equations (3.15), (3.16) and (3.22) and the expressions 
(3.2H3.6) of the WN functions, it is not difficult to obtain the following approximate 
expression of the sojoum time T (valid for an extended wavepacket): 

(2/n)'/2 +m ~ I ( t )  d2ebcf) - qo + 2ikc(t) 
+A- 8mwu l, cosh(Qt + V )  
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The first integration is straightforward and yields the following expression of the first 
term 

For the evaluation of the second integral in the above equation we can assume, without 
loss of generality, that 40 = 0 (i.e. an initial wavepacket centred at the origin) and that k is 
small. Thus, by still taking into account that U >> lo, the quantity in curly brackets becomes 
simply 

d: - 4 (. . .] FZ: - 
2u2 

Let us denote by F ( y ,  w ,  a, t )  the function multiplying the perturbation parameter A. 
On account of equation (AS) and by the above assumptions, we can write 

dul s i n ( h / R )  sinh(yu/2CZ) 
+s in ($ ) i  cosh' U 

sinh(yu/2Q) sin(hulS2) 
cosh3 U 

du + Zfie-Y'lzQ [cos (:q) l 
I1 cosh(yu/2Q) cos(fiu/Q) du 

-sin($)J cosh' U 

du [ 2(52 - y/2)e+p/'19 

[ (i ) lm cos(hu/Q)cosh(yu/2Q) du 

lm cosh(1 - y / Q ) u  
cosh' U 

+ (n - y/2)2 + $2 

- 2 ( ~  - y/2)eY'/zn cos -9 

sin(au/Q) sinh(yu/2Q) 
+s in ($ ) i  cosh' U 

+ 2fie-~'/2' [ sin (-$) 

cosh3 U 

cos(h/Q)cosh(yu/XL) du 
cosh3 U 

sin(hu/Q) sinh(yu/2Q) 
cosh' U 

Exploiting the well known formula 

( ') R e ( u f p )  0 a > 0 (A.7) 
cosh(2gu) 

du =4"-'B U + -, U - - J o cosh2"(cyu) a 
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where B(x ,  y) is the beta function (Euler's integral of the first kind), equation (A.6) takes 
the form 

where p = y/2Q + ifi/Q, and the star denotes the usual conjugation of complex numbers. 
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